Signal Processing for Advanced Storage Media

Professor Joseph A. O’Sullivan
Professor Ronald S. Indeck
Naveen Singla
Department of Electrical and Systems Engineering

Washington University in St. Louis

Center for Security Technologies
Securing our World through Technology
Advanced Media for Storage

- Blu-ray disc
- Patterned media
- Holographic storage
- Two-dimensional optical storage

Two-Dimensional Intersymbol Interference

Existing schemes, like the Viterbi algorithm, cannot deal with 2D ISI due to complexity considerations.
Outline

- Joint Equalization and Decoding: Linear 2D ISI
 - MMSE Equalization
 - Full Graph Decoding
 - Modified Full Graph Decoding
 - Separable Channel Models
- 2D Optical Data Storage: Nonlinear ISI
 - Full Graph Decoding
 - Density Evolution for Threshold Behavior
- Conclusions
Joint Equalization and Decoding Schemes for 2D ISI

- Performance can be improved dramatically by combining error control coding with equalization
 - Based on existing equalization schemes
 - Jointly model channel ISI and parity check matrix for error control code—three level graph
 - Employ novel message-passing algorithms that take advantage of the 2D dependence

Low-density parity-check codes used for error correction

- $x(i,j) \in \{+1,-1\}$
- Channel ISI is 2D
- Noise is assumed to be AWGN
2D Linear Intersymbol Interference

\[
\begin{align*}
\begin{bmatrix}
1 & 1 & 1 & \Lambda & \Lambda & 1 \\
1 & x_{11} & x_{12} & \Lambda & x_{1k} & 1 \\
1 & x_{21} & \Omega & 1 \\
M & M & \Omega & \Omega & M \\
1 & x_{k1} & x_{k2} & \Lambda & x_{kk} & 1 \\
1 & 1 & 1 & \Lambda & \Lambda & 1
\end{bmatrix}
\end{align*}
\]

\[
h = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 0.25 \end{pmatrix}
\]

\[
\begin{align*}
\begin{bmatrix}
r_{00} & r_{01} & \Lambda & \Lambda & \Lambda & r_{0k+1} \\
r_{10} & r_{11} & \Lambda & \Lambda & r_{1k} & r_{1k+1} \\
M & M & \Omega & M & r_{2k+1} \\
M & M & \Omega & M & M \\
r_{k0} & r_{k1} & \Lambda & \Lambda & r_{kk} & r_{kk+1} \\
r_{k+10} & r_{k+11} & \Lambda & \Lambda & r_{k+k} & r_{k+k+1}
\end{bmatrix}
\end{align*}
\]

Guard Band

\[
r_{i,j} = x_{i,j} + 0.5x_{i-1,j} + 0.5x_{i,j-1} + 0.25x_{i-1,j-1} + w_{i,j}
\]
MMSE Equalization

- Equalizer may or may not iterate with the LDPC decoder.
- Soft information, estimated mean of the codeword, passed from LDPC decoder to equalizer.
Performance

Block length 10000, regular, rate-0.5, LDPC code

Iterative MMSE and decoding

Bit error rate, log Base 10 vs. SNR [dB]

- ISI-free
- Itr Wiener_10
- Wiener
- MMSE-No coding

Block length 10000, regular, rate-0.5, LDPC code
Full Graph Message-Passing

\[h = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 0.25 \end{pmatrix} \]

\[r_{i,j} = x_{i,j} + 0.5x_{i-1,j} + 0.5x_{i,j-1} + 0.25x_{i-1,j-1} + w_{i,j} \]
Full Graph Message-Passing

\[
L^{(l)}_{x \rightarrow z} = \sum_{m \in N(x)} L^{(l-1)}_{m \rightarrow x} + \sum_{z' \in N(x) \setminus z} L^{(l-1)}_{z' \rightarrow x}
\]
Full Graph Message-Passing

\[\tanh \left(\frac{L_{z \rightarrow x}^{(l)}}{2} \right) = (-1)^z \prod_{x' \in N(z) \setminus x} \tanh \left(\frac{L_{x' \rightarrow z}^{(l-1)}}{2} \right) \]

- Check Nodes (z)
- Codeword Bit Nodes (x)
- Measured Data Nodes (r)
Full Graph Message-Passing

\[L_{x \rightarrow m}^{(l)} = \sum_{m' \in N(x) \setminus m} L_{m' \rightarrow x}^{(l-1)} + \sum_{z \in N(x)} L_{z \rightarrow x}^{(l)} \]
Full Graph Message-Passing

Let \(L_{m \rightarrow x}^{(l)} = f(\{L_{x' \rightarrow m}^{(l)} : x' \in N(m) \setminus x\}) \)
Performance

Block length 10000, regular, rate-0.5, LDPC code

Full Graph Message Passing

Bit error rate in log10

SNR [dB]
Full Graph Analysis

- Length 4 cycles present which degrade performance of message-passing algorithm.

From Check Nodes:
- $x(i,j)$
- $x(i+1,j)$
- $x(i+2,j)$

To Check Nodes:
- \(\prod_{i,j} \)
- \(\prod_{i+1,j} \)
- \(\prod_{i+2,j} \)

Modified Full Graph Message-Passing

- From Imaging – Data set is grouped into subsets to increase rate of convergence
- For Decoding – Measured data is grouped into subsets and a modified schedule is employed: results in increase in girth of full graph

Labeling of data nodes into 4 subsets

For each iteration use data nodes of one label only

Performance

Block length 10000, regular, rate-0.5, LDPC code

Ordered Subsets Message Passing

Bit error rate in log10 vs. SNR [dB]
A Separable 2D ISI

- **Advantages of Separable 2D ISI**
 - Apply existing one-dimensional equalization methods
 - Reduced Detector Complexity

\[h = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 0.25 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \begin{bmatrix} 1 & 0.5 \end{bmatrix} \]

Row-Column Decoder Diagram

- Inputs to column detector are not binary

Performance

Block length 10000, regular, rate-0.5, LDPC code

Row-Column Decoder

Bit error rate, log Base 10 vs. SNR [dB]
Outline

- Joint Equalization and Decoding: Linear 2D ISI
 - MMSE Equalization
 - Full Graph Decoding
 - Modified Full Graph Decoding
 - Separable Channel Models
- 2D Optical Data Storage: Nonlinear ISI
 - Full Graph Decoding
 - Density Evolution for Threshold Behavior
- Conclusions
Two-Dimensional Optical Storage

- 11 rows of hexagonal bit-cells stacked together
- Guard band separates adjacent stacks

2D ISI Model

\[I(\mathbf{R}) = 1 - \sum_j c_j u_j + \sum_{j \neq k} d_{j,k} u_j u_k \quad j, k \in \mathbb{N}(\mathbf{R}) \]

- \(I(\mathbf{R}) \): received intensity at location \(\mathbf{R} \)
- \(c_j \): coefficients of linear ISI
- \(d_{j,k} \): coefficients of nonlinear ISI
- \(u_j \): binary data written on disc

- Based on scalar diffraction model proposed by Wim Coene
- Nonlinear ISI

2D ISI Model

- ISI coefficients calculated using recording specifics
- For simplicity use only nearest neighbors: 14 configurations
2D ISI: Signal Levels

Signal levels using nearest neighbors only

<table>
<thead>
<tr>
<th>Nonzero neighbors</th>
<th>Central bit=0</th>
<th>Central bit=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.95</td>
<td>0.50</td>
</tr>
<tr>
<td>1</td>
<td>0.80</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>0.55</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Range of signal when central bit is 0 is greater than when central bit is 1: asymmetry due to nonlinear ISI

Full Graph Performance Results

Block length 10000, regular, rate-0.9, LDPC code
Density Evolution

- Assume messages are i.i.d. random variables
- Evolve message densities through the message maps
- If densities converge to desired density, then error-free transmission possible otherwise not
- Gives lower bound on performance of message-passing scheme

Density Evolution for Full Graph Message-Passing

- Codeword bit nodes to check nodes

\[L^{(l)}_{x \rightarrow z} = \sum_{m \in N(x)} L^{(l-1)}_{m \rightarrow x} + \sum_{z' \in N(x) \setminus z} L^{(l-1)}_{z' \rightarrow x} \quad \text{CONVOLUTION} \]

- Check nodes to codeword bit nodes

\[\tanh \frac{L^{(l)}_{z \rightarrow x}}{2} = (-1)^z \prod_{x' \in N(z) \setminus x} \tanh \frac{L^{(l-1)}_{x' \rightarrow z}}{2} \quad \text{LOOKUP TABLE} \]
Density Evolution…

- Codeword bit nodes to measured data nodes

\[L^{(l)}_{x \rightarrow m} = \sum_{m' \in N(x) \setminus m} L^{(l-1)}_{m' \rightarrow x} + \sum_{z \in N(x)} L^{(l)}_{z \rightarrow x} \quad \text{CONVOLUTION} \]

- Measured data nodes to codeword bit nodes

\[L^{(l)}_{m \rightarrow x} = f(\{L^{(l)}_{x' \rightarrow m} : x' \in N(m) \setminus x\}) \]

MONTE CARLO SIMULATION
Density Evolution Results

Full graph algorithm for TWODOS

<table>
<thead>
<tr>
<th>Code Parameters (d_v,d_c)</th>
<th>Rate</th>
<th>Threshold Full Graph (σ^2)</th>
<th>SNR [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,4)</td>
<td>0.25</td>
<td>0.0206</td>
<td>6.846</td>
</tr>
<tr>
<td>(3,6)</td>
<td>0.50</td>
<td>0.0071</td>
<td>8.462</td>
</tr>
<tr>
<td>(3,30)</td>
<td>0.90</td>
<td>0.0025</td>
<td>10.443</td>
</tr>
</tbody>
</table>
Complexity Considerations

- LDPC code complexity per iteration is linear in block length.
- At every iteration the number of computations on the channel ISI graph are proportional to number of edges in the channel ISI graph.
- Messages are floating point precision: fixed point implementation needed.
Conclusions

- Joint Decoding and Equalization
 - Prior simulations for magnetic media
 - Current simulations for optical hexagonal storage—account for nonlinearity
- Two-Dimensional Approach
- Potential SNR Improvement
Washington University Team

- **Professor Ronald S. Indeck**
 Expertise in magnetics, optics, experimental design, system integration
 - President of the IEEE Magnetics Society
 - Founder of Magnetics Information Systems Center at Washington University
 - Founding Director of the Center for Security Technologies at Washington University
 - Numerous national and international advisory appointments

- **Professor Joseph A. O’Sullivan**
 Expertise in information theory, imaging systems design and analysis, signal and image processing
 - Chair of the Washington University Faculty Senate
 - Director of the Electronic Systems and Signals Research Laboratory at Washington University
 - Associate Director of the Center for Security Technologies at Washington University
 - Past associate editor and publications editor for the IEEE Transactions on Information Theory

- Team of graduate students including Naveen Singla
- Synergistic research activities at Washington University include reconfigurable hardware for high speed computations